Stronger and tougher body armor to shield the chest, abdomen and back may be just what soldiers fighting in the Afghanistan and Iraq wars need to better protect their brains from mild injuries tied to so-called “shell shock,” results of a Johns Hopkins study in mice suggest. Such mild trauma, resulting from the initial shock of exploding mines, grenades and improvised explosive devices (IEDs) now accounts for more than 80 percent of all brain injuries among U.S. troops. Some 160,000 American veteran men and women are estimated to have sustained this kind of trauma.
“Protecting the body is absolutely essential to protecting the brain,” says senior study investigator and Johns Hopkins neuropathologist Vassilis Koliatsos, M.D. “Blast-related injuries, including what we call blast-induced neurotrauma, are the signature medical events of current wars, and improvements to body armor in addition to helmet- wearing are likely going to be needed if we want to minimize their threat to our soldiers’ health,” says Koliatsos, a professor at the Johns Hopkins University School of Medicine.
In a report to be published in the May edition of the Journal of Neuropathology and Experimental Neurology, Koliatsos and his team used a metal shock tube specially designed at Hopkins’ Applied Physics Laboratory to isolate the effects of an explosion’s primary blast wave on mice.
Researchers found that a plastic glass covering around the torso of shocked mice fully protected them from any axonal nerve cell damage in critical parts of the brain responsible for body movement, including the cerebellum and the corticospinal tract, which links nerves in the brain to those in the spinal cord. Body armor also shielded mice from over 80 percent of the axonal damage observed in the brain’s visual pathways when compared to mice wearing no body armor.